Propagasi merupakan perilaku gelombang elektromagnetik ketika dipancarkan oleh transmiter, gelombang tersebut akan mengalami beberapa perlakuan berikut ini sebelum dapat diterima receiver:
Absorsi / Penyerapan
Pada saat gelombang elektromagnetik menabrak sesuatu (suatu material), biasanya gelombang akan menjadi lebih lemah atau teredam. Berbanyak daya yang hilang akan sangat tergantung pada frekuensi yang digunakan dan tentunya material yang di tabrak. Kaca jendela bening transparan terhadap cahaya, sedang kaca rayband akan mengurangi intensitas cahaya yang masuk dan juga radiasi ultraviolet.
Seringkali, koefisien absorsi digunakan untuk menjelaskan efek material terhadap radiasi. Untuk gelombang mikro (microwave), ada dua (2) material utama yang menjadi penyerap, yaitu,
● Metal. Elektron bergerak bebas di metal, dan siap untuk berayun oleh karenanya akan menyerap energy dari gelombang yang lewat.
● Air. Gelombang mikro akan menyebabkan molekul air bergetar, yang pada proses-nya akan mengambil sebagian energi gelombang.
Untuk kepentingan pembuatan jaringan nirkabel secara praktis, kita akan melihat metal dan air sebagai penyerap gelombang yang baik. Kita tidak mungkin dapat menembus mereka. Walaupun kalau ada lapisan air yang tipis sebagian dari daya gelombang akan dapat menembus. Lapisan air merupakan penghalang gelombang mikro, kira-kira sama dengan tembok pada cahaya. Jika kita berbicara tentang air, kita harus ingat bahwa air mempunyai banyak bentuk: hujan, kabut, awan, dan banyak lagi yang harus di lalui oleh sambungan radio. Air mempunyai banyak dampak yang besar, dan dalam banyak kesempatan perubahan cuaca sangat mungkin untuk membuat sambungan radio menjadi putus.
Ada material lain yang mempunyai efek yang lebih kompleks terhadap penyerapan gelombang radio. Untuk pohon dan kayu, banyaknya penyerapan sangat tergantung pada jumlah air yang ada pada-nya. Kayu tua yang mati dan kering relatif transparan bagi gelombang mikro, sementara kayu masih masih segar dan basah biasanya akan menyerap cukup besar gelombang mikro.
Plastik dan materil yang sejenis pada umumnya tidak menyerap banyak energy radio tapi tergantung dari frekuensi dan tipe material. Sebelum kita menggunakan komponen dari plastik, misalnya, untuk memproteksi peralatan radio maupun antenna dari cuaca, sebaiknya kita ukur lebih dulu apakah material plastik yang kita gunakan akan menyerap gelombang radio sekitar frekuensi 2.4GHz. Cara paling sederhana untuk mengukur penyerapan sinyal 2.4GHz di plastik adalah dengan meletakan contoh plastik yang akan kita gunakan di oven microwave selama beberapa menit. Jika platik tersebut panas, berarti plastik tersebut menyerap energy microwave dan sebaiknya jangan digunakan untuk membuat proteksi anti cuaca untuk peralatan antenna & radio.
Terakhir, ada baiknya kita membicarakan tentang diri kita sendiri: manusia, dan tentunya juga hewan, yang sebagian besar mengandung air. Untuk jaringan nir kabel, manusia akan dilihat sebagai sebuah kantong yang besar berisi air, yang akan menyerap gelombang mikro cukup kuat. Mengarahkan sebuah akses point di kantor sehingga sinyal harus menembus banyak orang adalah kesalahan fatal dalam merancang jaringan di sebuah gedung perkantoran. Hal yang sama juga berlaku untuk hotspot, instalasi di cafe, perpustakaan maupun di instalasi luar ruangan.
Refleksi / Pantulan
Seperti hal-nya cahaya, gelombang radio juga akan terpantul jika gelombang tersebut bersentuhan dengan material yang cocok untuk itu. Untuk gelombang radio, sumber utama dari pantulan adalah metal dan permukaan air. Aturan terjadinya pantulan cukup sederhana, sudut masuknya gelombang ke permukaan akan sama dengan sudut sinyal di pantulkan. Perlu di perhatian bahwa dalam pandangan gelombang radio sebuah terali besi atau sekumpulan tiang besi yang rapat sama dengan sebuah permukaan yang padat, selama jarak antar tiang lebih kecil dari panjang gelombang radio-nya. Pada frekuensi 2.4GHz, metal grid dengan jarak satu cm akan berfungsi sama dengan panel metal.
Walaupun aturan refleksi sangat sederhana, segala sesuatu akan menjadi sangat kompleks jika kita bayangkan interior kantor dengan banyak sekali objek metal yang kecil dengan bentuk yang sangat kompleks. Hal yang sama juga terjadi di situasi pinggiran kota: perhatikan sekeliling anda di lingkungan kota coba untuk melihat semua objek metal yang ada. Hal ini yang menyebabkan terjadinya efek multipath, sinyal yang mencapai tujuan melalui jalur yang berbeda-beda, dan tentunya waktu yang berbeda-beda, yang mempunyai peranan yang sangat penting dalam jaringan nirkabel.
Permukaan air, dengan gelombang dan riak yang berubah setiap waktu, akan menyebabkan pantulan dari objek akan menjadi sulit untuk di hitung dan di perkirakan secara tepat.
Kita juga harus menambahkan bahwa polarisasi gelombang juga ada efek-nya: gelombang dengan polarisasi yang berbeda pada umumnya akan di pantulkan secara berbeda.
Kata dapat menggunakan refleksi untuk memperoleh keuntungan dalam membangun antena: misalnya kami menempatkan parabola besar di belakang radio pemancar / penerima yang kita gunakan untuk mengumpulkan dan membundel sinyal radio menuju titik yang kecil.
Difraksi
Difraksi akan tampak seperti pembelokan dari gelombang pada saat menabrak sebuah objek. Hal ini merupakan efek dari “gelombang akan mengitari pojokan”.
Bayangkan sebuah gelombang di air merambat dalam barisan gelombang yang lurus, seperti barisan gelombang yang sering kita lihat di pantai. Bayangkan jika kita meletakan penghalang benda padat, misalnya pagar kayu yang rapat, yang menghalangi pergerakan gelobang. Jika kita memotong pagar tersebut, dan membuat bukaan sempit di pagar, seperti sebuah pintu yang kecil. Dari bukaan tersebut, sebuah gelombang sirkular akan di mulai, dan akan merambat ke berbagai tempat yang tidak garis lurus dari pembukaan yang kita buat, tapi juga ke lokasi-lokasi yang ada di samping pembukaan. Jika kita melihat barisan gelombang – yang mungkin saja berupa gelombang elektromagnetik – sebagai sinar yang lurus, akan susah untuk menerangkan bagaimana caranya mencapai titik-titik yang tersembunyi di balik penghalang. Dengan model barisan gelombang, maka fenomena ini menjadi masuk akal.
Prinsip Huygens memberikan sebuah model untuk mengerti perilaku ini. Bayangkan pada saat tertentu, semua titik di barisan gelombang menjadi titik awal dari gelombang kecil yang menyebar. Ide ini kemudian di kembangkan oleh Fresnel, apakah hal ini cukup untuk menjelaskan fenomena yang terjadi memang masih menjadi perdebatan. Akan tetapi untuk kebutuhan kita, model Huygens dapat menjelaskan effek yang terjadi dengan cukup baik.
Melalui kemampuan untuk difrasi, gelombang akan “membelok” melewati pojokan atau melalui pembukaan kecil yang ada di penghalang. Untuk panjang gelombang cahaya biasanya terlalu kecil untuk manusia untuk melihat efek ini secara langsung. Pada gelombang mikro, dimana panjang gelombangnya beberapa centimeter, akan menampakan efek difraksi saat gelombang menabrak tembok, puncak gunung, dan berbagai halangan lainnya. Tampaknya seperti penghalang akan menyebabkan gelombang mengubah arah-nya dan mengitari sisi / pojokan penghalang.
Perlu di catat bahwa difraksi akan membebani daya, energy dari gelombang yang terdifraksi akan sangat jauh lebih kecil dari barisan gelombang asal-nya. Pada aplikasi yang sangat spesifik, kita dapat mengambil keuntungan dari difraksi untuk mengatasi hambatan.
Interferensi
Jika kita bekerja dengan gelombang, satu tambah satu belum tentu sama dengan dua. Hasilnya
kadang-kadang bisa saja jadi nol.
Untuk dapat mengerti apa yang di maksud, bayangkan jika kita menggambar dua (2) gelombang sinus dan menjumlahkan amplitidanya. Pada saat saat puncak bertemu dengan puncak, maka kita akan memperoleh hasil yang maksimum (1 + 1 = 2). Hal ini disebut interferensi konstruktif. Akan tetapi, jika puncak bertemu dengan lembah, kita akan memperoleh penghilangan dari sinyal ((1 + (-)1 = 0) – interferensi destruktif.
Kita sebetulnya dapat dengan mudah mencoba hal ini pada gelombang di air dan dua buah tongkat kecil untuk membuat gelombang melingkar – kita akan melihat bahwa pada tempat dimana dua gelombang bertemu, akan ada tempat yang mempunyai puncak gelombang yang tinggi sementara di beberapa tempat lainya hampir rata dan datar.
Agar seluruh barisan gelombang menjumlah atau meniadakan satu sama lain secara sempurna, kita harus mempunyai dua gelombang yang mempunyai panjang gelombang dan hubungan fasa yang tetap. Hal ini berarti jarak puncak gelombang yang satu dengan puncak gelombang yang lain tetap.
Dalam teknologi wireless, istilah interferensi biasanya digunakan untuk hal yang lebih luas, untuk gangguan dari sumber RF (Radio Frekuensi), seperti, dari kanal tetangga. Oleh karenanya, seorang wireless networker jika berbicara tentang interferensi biasanya mereka membicarakan berbagai gangguan oleh jaringan lain, atau sumber gelombang mikro lainnya. Interferensi merupakan salah satu kesulitan utama pada saat membangun sambungan wireless, terutama di lingkungan perkotaan atau ruangan yang tertutup, seperti, ruang seminar atau konferensi dimana banyak jaringan akan saling berkompetisi untuk menggunakan spektrum frekuensi yang ada.
Pada saat gelombang dengan amplituda yang sama tapi berbeda fasa saling bersilangan, gelombang akan salaing menghilangkan dan tidak akan ada sinyal yang di terima. Sering kali, gelombang akan bergabung satu sama lain membentuk gelombang bersama yang tidak berarti apa-apa sehingga tidak dapat digunakan untuk komunikasi. Teknik modulasi dan menggunakan banyak kanal akan menolong dengan masalah interferensi, tapi tidak dapat menghilangkan sama sekali.
0 komentar:
Posting Komentar